GPIO: General-purpose input/output,通用输入输出接口。下面以IMX6ULL芯片的GPIO寄存器来展开介绍。
1 GPIO 寄存器的 2 种操作方法
- 直接读写:读出、修改对应位、写入。| 12
 3
 4
 5
 6
 7
 8
 
 | a) 要设置 bit n:val = data_reg;
 val = val | (1<<n);
 data_reg = val;
 b) 要清除 bit n:
 val = data_reg;
 val = val & ~(1<<n);
 data_reg = val;
 
 |  
 
- set-and-clear protocol:(芯片不一定支持)
  set_reg, clr_reg, data_reg 三个寄存器对应的是同一个物理寄存器:
  a) 要设置 bit n:set_reg = (1<<n);
  b) 要清除 bit n:clr_reg = (1<<n);
2 GPIO 寄存器配置流程
2.1 CCM时钟设置
CCM寄存器为GPIO 模块提供时钟:

以IMX6ULL 芯片为列,GPIOn 要用 CCM_CCGRx 寄存器中的 2 位来决定该组 GPIO 是否使能。将对应的clk gating enable。

| 12
 3
 4
 
 | 00:该 GPIO 模块全程被关闭01:该 GPIO 模块在 CPU run mode 情况下是使能的;在 WAIT 或 STOP 模式下,关闭
 10:保留
 11:该 GPIO 模块全程使能
 
 | 
例如:用CCM_CCGR0[bit31:30]使能GPIO2 的时钟:

例如:用CCM_CCGR1[bit31:30]使能GPIO5 的时钟:
例如:用CCM_CCGR1[bit27:26]使能GPIO1 的时钟:

例如:用CCM_CCGR2[bit27:26]使能GPIO3的时钟:

例如:用CCM_CCGR3[bit13:12]使能GPIO4的时钟:

2.2 引脚模式电器属性设置

MUX seting用来配置pin的模式,比如GPIO。Pad setting用来设置GPIO的电器属性,比如电平,上下拉情况。
对于某个/某组引脚,IOMUXC 中有 2 个寄存器用来设置它:
2.2.1 IOMUX功能
 a) `IOMUXC_SW_MUX_CTL_PAD_ <PAD_NAME>`:`Mux pad xxx`,选择某个引脚的功能
  b) IOMUXC_SW_MUX_CTL_GRP_<GROUP_NAME>:Mux grp xxx,选择某组引脚的功能

某个引脚,或是某组预设的引脚,都有 8 个可选的模式(alternate (ALT) MUX_MODE),设成ALT5表示选择GPIO。

2.2.2 电器属性功能
a) IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>:pad pad xxx,设置某个引脚的电器属性
b) IOMUXC_SW_PAD_CTL_GRP_<GROUP_NAME>:pad grp xxx,设 置某组引脚的电器属性

pad参数有很多不只是上下拉,还有很多属性如IO驱动能力。

2.2.2.1 GPIO驱动LED的4种方式

① 使用引脚输出 3.3V 点亮 LED,输出 0V 熄灭 LED。
② 使用引脚拉低到 0V 点亮 LED,输出 3.3V 熄灭 LED。
③有的芯片为了省电等原因,其引脚驱动能力不足,这时可以使用三极管驱动。 使用引脚输出 1.2V 点亮 LED,输出 0V 熄灭 LED。
④使用引脚输出 0V 点亮 LED,输出 1.2V 熄灭 LED
2.2.3 GPIO方向
当iomux成gpio模式后,就需要配置成gpio输出。
GPIOx_GDIR:设置引脚方向,每位对应一个引脚,1-output,0-input.

确定每组gpio基地址如下:加4就对应方向寄存器。

2.2.4 GPIO值
GPIOx_DR:(GPIOx的data register)。设置输出引脚的电平,每位对应一个引脚,1-高电平,0-低电平。

如果是配成了输入引脚,GPIOx_PSR:读取引脚的电平,每位对应一个引脚,1-高电平,0-低电平:

3 字符设备驱动程序框架


字符驱动编写流程:
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 
 | 
 
 
 
 
 
 
 
 if (newchrled.major) {
 newchrled.devid = MKDEV(newchrled.major, 0);
 register_chrdev_region(newchrled.devid, NEWCHRLED_CNT, NEWCHRLED_NAME);
 } else {
 alloc_chrdev_region(&newchrled.devid, 0, NEWCHRLED_CNT, NEWCHRLED_NAME);
 newchrled.major = MAJOR(newchrled.devid);
 newchrled.minor = MINOR(newchrled.devid);
 }
 printk("newcheled major=%d,minor=%d\r\n",newchrled.major, newchrled.minor);
 
 
 newchrled.cdev.owner = THIS_MODULE;
 cdev_init(&newchrled.cdev, &newchrled_fops);
 
 
 cdev_add(&newchrled.cdev, newchrled.devid, NEWCHRLED_CNT);
 
 
 newchrled.class = class_create(THIS_MODULE, NEWCHRLED_NAME);
 if (IS_ERR(newchrled.class))
 return PTR_ERR(newchrled.class);
 
 
 newchrled.device = device_create(newchrled.class, NULL, newchrled.devid, NULL, NEWCHRLED_NAME);
 if (IS_ERR(newchrled.device))
 return PTR_ERR(newchrled.device);
 
 | 
3.1 实现通用性驱动模板
3.1.1 led_drv.c
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 
 | #include <linux/module.h>#include <linux/fs.h>
 #include <linux/errno.h>
 #include <linux/miscdevice.h>
 #include <linux/kernel.h>
 #include <linux/major.h>
 #include <linux/mutex.h>
 #include <linux/proc_fs.h>
 #include <linux/seq_file.h>
 #include <linux/stat.h>
 #include <linux/init.h>
 #include <linux/device.h>
 #include <linux/tty.h>
 #include <linux/kmod.h>
 #include <linux/gfp.h>
 #include "led_opr.h"
 
 
 static int major = 0;
 static struct class *led_class;
 struct led_operations *p_led_opr;
 
 #define MIN(a, b) (a < b ? a : b)
 
 static ssize_t led_drv_read(struct file *file, char __user *buf, size_t size, loff_t *offset)
 {
 printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
 return 0;
 }
 
 
 static ssize_t led_drv_write(struct file *file, const char __user *buf, size_t size, loff_t *offset)
 {
 int err;
 char status;
 struct inode *inode = file_inode(file);
 int minor = iminor(inode);
 
 printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
 err = copy_from_user(&status, buf, 1);
 
 p_led_opr->ctl(minor, status);
 return 1;
 }
 
 static int led_drv_open(struct inode *node, struct file *file)
 {
 int minor = iminor(node);
 
 printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
 
 p_led_opr->init(minor);
 return 0;
 }
 
 static int led_drv_close (struct inode *node, struct file *file)
 {
 printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
 return 0;
 }
 
 
 static struct file_operations led_drv = {
 .owner         = THIS_MODULE,
 .open    = led_drv_open,
 .read    = led_drv_read,
 .write   = led_drv_write,
 .release = led_drv_close,
 };
 
 
 
 static int __init led_init(void)
 {
 int err;
 int i;
 
 printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
 major = register_chrdev(0, "100ask_led", &led_drv);
 led_class = class_create(THIS_MODULE, "100ask_led_class");
 err = PTR_ERR(led_class);
 if (IS_ERR(led_class)) {
 printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
 unregister_chrdev(major, "led");
 return -1;
 }
 p_led_opr = get_board_led_opr();
 
 for (i = 0; i < p_led_opr->num; i++)
 device_create(led_class, NULL, MKDEV(major, i), NULL, "100ask_led%d", i);
 return 0;
 }
 
 static void __exit led_exit(void)
 {
 int i;
 
 printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
 for (i = 0; i < p_led_opr->num; i++)
 device_destroy(led_class, MKDEV(major, i));
 class_destroy(led_class);
 unregister_chrdev(major, "100ask_led");
 }
 
 module_init(led_init);
 module_exit(led_exit);
 MODULE_LICENSE("GPL");
 
 | 
- register_chrdev, 如果传入主设备号,则静态注册,传入0则动态注册返回主设备号。
- class_create创建类- /sys/class/100ask_led_class。
- get_board_led_opr获取具体单板的操作operation函数,后面具体单板实现。
- 获取到具体单板的led数量后,device_create为每一个led灯都建立设备节点。
再来看file_operations中的操作:
- led_drv_open根据次设备号,调用具体单板的- init函数,比如gpio 引脚复用,电器属性设置等。
- led_drv_write就可以根据次设备号, 控制具体单板的led引脚,设置高低电平,从而控制亮灭。
3.2 具体单板led驱动
3.2.1 led_opr.h
| 12
 3
 4
 5
 6
 7
 8
 9
 
 | #ifndef _LED_OPR_H#define _LED_OPR_H
 struct led_operations {
 int num;
 int (*init) (int which);
 int (*ctl) (int which, char status);
 };
 struct led_operations *get_board_led_opr(void);
 #endif
 
 | 
定义一个led_operations,num表示有几个led,  init表示初始化led(drv_open的时候调用,配置pinmux,io mode, enable pin clk等)。
3.2.2 board_100ask_imx6ull-qemu.c分析
现在有一块board_100ask_imx6ull-qemu板子有4个LED,占2组GPIO,分别是GPIO5_3和GPIO1_3, GPIO1_5, GPIO1_6。

3.2.2.1 CCM时钟配置
寄存器配置参考2.1。使能时钟gpio5和gpio1的时钟,CCM_CCGR1[CG13]和CCM_CCGR1[CG15]配置成0x11。
| 12
 3
 4
 5
 6
 7
 8
 
 | 
 
 *CCM_CCGR1 |= (3<<26);
 
 
 
 *CCM_CCGR1 |= (3<<30);
 
 | 
3.2.2.2 IOMUX成gpio
iomux配置4个引脚复用成gpio功能。
3.2.2.2.1 gpio5_3 进行iomux
基地址为0x2290014。用ioremap进行映射到虚拟地址,就可以直接操作寄存器地址了。但是一般建议用writel, writeb等函数族。配成5表示gpio模式。

| 12
 3
 4
 5
 
 | IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3=ioremap(0x2290014, 4);        
 
 
 *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 = 5;
 
 | 
3.2.2.2.2 gpio1_3/gpio1_5/gpio1_6 进行iomux



每次映射4个字节太繁琐,干脆对整个gpio的iomux地址进行映射。
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 
 | struct iomux {volatile unsigned int unnames[23];
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO00;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO01;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO02;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO04;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO05;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO06;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO07;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO08;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO09;
 };
 
 iomux = ioremap(0x20e0000, sizeof(struct iomux));
 
 | 
这里偷懒用了一个技巧,unnames[23] 占92(0x5c)字节,刚好IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO00地址就是0x20e0000+0x5c,就不用把所有寄存器都搬进来到struct iomux。
同理IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03地址就是0x20e0000+0x68, 因此:
| 12
 3
 4
 
 | iomux->IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 = 5;
 iomux->IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO05 = 5;
 iomux->IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO06 = 5;
 
 | 
3.2.2.3 gpio配成输出

| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 
 | struct imx6ull_gpio {volatile unsigned int dr;
 volatile unsigned int gdir;
 volatile unsigned int psr;
 volatile unsigned int icr1;
 volatile unsigned int icr2;
 volatile unsigned int imr;
 volatile unsigned int isr;
 volatile unsigned int edge_sel;
 };
 
 gpio1 = ioremap(0x209C000, sizeof(struct imx6ull_gpio));
 gpio1->gdir |= (1<<3);
 gpio1->gdir |= (1<<5);
 gpio1->gdir |= (1<<6);
 
 | 
offset为0表示data register, offset为4表示方向寄存器。以gpio1_3/gpio1_5/gpio1_6举例,gdir的bit_n置1就表示哪个gpio配成输出。
3.2.2.4 gpio值设置
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 
 | if (which == 0) {if (status)
 gpio5->dr &= ~(1<<3);
 else
 gpio5->dr |= (1<<3);
 } else if (which == 1) {
 if (status)
 gpio1->dr &= ~(1<<3);
 else
 gpio1->dr |= (1<<3);
 } else if (which == 2) {
 if (status)
 gpio1->dr &= ~(1<<5);
 else
 gpio1->dr |= (1<<5);
 } else if (which == 3) {
 if (status)
 gpio1->dr &= ~(1<<6);
 else
 gpio1->dr |= (1<<6);
 }
 
 | 
同理dr就表示数据寄存器。一共4个led:
| 12
 3
 4
 
 | which等于0表示gpio5_3which等于1示gpio1_3
 which等于2示gpio1_5
 which等于3示gpio1_6
 
 | 
3.2.2.5 board_100ask_imx6ull-qemu.c
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 
 | #include <linux/module.h>#include <linux/fs.h>
 #include <linux/io.h>
 #include <linux/errno.h>
 #include <linux/miscdevice.h>
 #include <linux/kernel.h>
 #include <linux/major.h>
 #include <linux/mutex.h>
 #include <linux/proc_fs.h>
 #include <linux/seq_file.h>
 #include <linux/stat.h>
 #include <linux/init.h>
 #include <linux/device.h>
 #include <linux/tty.h>
 #include <linux/kmod.h>
 #include <linux/gfp.h>
 #include "led_opr.h"
 
 struct iomux {
 volatile unsigned int unnames[23];
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO00;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO01;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO02;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO04;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO05;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO06;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO07;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO08;
 volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO09;
 };
 struct imx6ull_gpio {
 volatile unsigned int dr;
 volatile unsigned int gdir;
 volatile unsigned int psr;
 volatile unsigned int icr1;
 volatile unsigned int icr2;
 volatile unsigned int imr;
 volatile unsigned int isr;
 volatile unsigned int edge_sel;
 };
 
 
 static volatile unsigned int *CCM_CCGR1;
 
 static volatile unsigned int *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3;
 static struct iomux *iomux;
 
 static struct imx6ull_gpio *gpio1;
 static struct imx6ull_gpio *gpio5;
 
 static struct led_operations board_demo_led_opr = {
 .num  = 4,
 .init = board_demo_led_init,
 .ctl  = board_demo_led_ctl,
 };
 
 static int board_demo_led_init(int which) {
 if (!CCM_CCGR1) {
 CCM_CCGR1 = ioremap(0x20C406C, 4);
 IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 = ioremap(0x2290014, 4);
 iomux = ioremap(0x20e0000, sizeof(struct iomux));
 gpio1 = ioremap(0x209C000, sizeof(struct imx6ull_gpio));
 gpio5 = ioremap(0x20AC000, sizeof(struct imx6ull_gpio));
 }
 
 if (which == 0) {
 *CCM_CCGR1 |= (3<<30);
 *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 = 5;
 gpio5->gdir |= (1<<3);
 } else if(which == 1) {
 *CCM_CCGR1 |= (3<<26);
 iomux->IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 = 5;
 gpio1->gdir |= (1<<3);
 } else if(which == 2) {
 *CCM_CCGR1 |= (3<<26);
 iomux->IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO05 = 5;
 gpio1->gdir |= (1<<5);
 } else if(which == 3) {
 *CCM_CCGR1 |= (3<<26);
 iomux->IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO06 = 5;
 gpio1->gdir |= (1<<6);
 }
 return 0;
 }
 static int board_demo_led_ctl(int which, char status)
 {
 if (which == 0) {
 if (status)
 gpio5->dr &= ~(1<<3);
 else
 gpio5->dr |= (1<<3);
 } else if (which == 1) {
 if (status)
 gpio1->dr &= ~(1<<3);
 else
 gpio1->dr |= (1<<3);
 } else if (which == 2) {
 if (status)
 gpio1->dr &= ~(1<<5);
 else
 gpio1->dr |= (1<<5);
 } else if (which == 3) {
 if (status)
 gpio1->dr &= ~(1<<6);
 else
 gpio1->dr |= (1<<6);
 }
 return 0;
 }
 
 struct led_operations *get_board_led_opr(void) {
 return &board_demo_led_opr;
 }
 
 | 
open的时候调用get_board_led_opr得到具体单板的操作函数集。进一步调用board_demo_led_init初始化led。
write的时候调用具体单板的操作函数集,进一步调用board_demo_led_ctl操控led。
4 字符设备驱动基础概念
4.1 EXPORT_SYMBOL
EXPORT_SYMBOL:导出函数,让别的module也能使用。

EXPORT_SYMBOL_GPL:

4.2 MODULE_INFO
MODULE_INFO(intree, "Y");的作用是将可加载内核模块标记为 in-tree。
加载树外 LKM 会导致内核打印警告:这是从module.c中的检查引起的:

module: loading out-of-tree module taints kernel.
4.2 module_param
module_param(name,type,perm);
功能:指定模块参数,用于在加载模块时或者模块加载以后传递参数给模块。
module_param_array( name, type, nump, perm);
可用sysfs进行查看修改:

讲到module_param,把其他的也一笔带入:
| 12
 3
 4
 
 | MODULE_DESCRIPTION("Freescale PM rpmsg driver");MODULE_AUTHOR("Anson Huang <Anson.Huang@nxp.com>");
 MODULE_LICENSE("GPL");
 MODULE_VERSION("v2.0");
 
 | 
4.2.1 type
type: 数据类型:
| 12
 3
 4
 5
 6
 7
 8
 9
 
 | bool : 布尔型inbool : 布尔反值
 charp: 字符指针(相当于char *,不超过1024字节的字符串)
 short: 短整型
 ushort : 无符号短整型
 int : 整型
 uint : 无符号整型
 long : 长整型
 ulong: 无符号长整型
 
 | 
4.2.2 perm
perm表示此参数在sysfs文件系统中所对应的文件节点的属性,其权限在include/linux/stat.h中有定义:

| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 
 | #define S_IRUSR 00400 #define S_IWUSR 00200
 #define S_IXUSR 00100
 
 #define S_IRGRP 00040
 #define S_IWGRP 00020
 #define S_IXGRP 00010
 
 #define S_IROTH 00004
 #define S_IWOTH 00002
 #define S_IXOTH 00001
 
 | 

| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 
 | static char *alg = NULL;static u32 type;
 static u32 mask;
 static int mode;
 
 module_param(alg, charp, 0);
 module_param(type, uint, 0);
 module_param(mask, uint, 0);
 module_param(mode, int, 0);
 
 static int fish[10];
 static int nr_fish;
 module_param_array(fish, int, &nr_fish, 0664);
 static char media[8];
 module_param_string(media, media, sizeof(media), 0);
 
 | 
可以用sysfs设置fish数组,或者insmod时伴随设置。
4.3 设备节点
cat /proc/devices

4.3.1 手动建立设备节点
手动建立设备节点命令是mknod, 由于这里的字符设备都是用的misc杂项设备方式,因此主设备号都为10:
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 
 | /mnt/Athena2_FPGA_SDK_Veriry/demo/workspace/ko brw-rw----    1 root     root      179,   1 Jan  1 00:05 /dev/mmcblk0p1
 /mnt/Athena2_FPGA_SDK_Veriry/demo/workspace/ko
 brw-rw----    1 root     root      179,   0 Jan  1 00:05 /dev/mmcblk0
 
 /dev
 crw-rw----    1 root     root       10,   0 Jan  1 00:05 /dev/cvi-base
 crw-rw----    1 root     root       10,  61 Jan  1 00:05 /dev/cvi-dwa
 crw-rw----    1 root     root       10,  58 Jan  1 00:30 /dev/cvi-ldc
 crw-rw----    1 root     root       10,  60 Jan  1 00:04 /dev/cvi-stitch
 crw-rw----    1 root     root       10,  62 Jan  1 00:05 /dev/cvi-sys
 crw-rw----    1 root     root       10,  59 Jan  1 00:04 /dev/cvi-vpss
 
 mknod /dev/mmcblk0 b 179 0
 mknod /dev/mmcblk0p1 b 179 1
 
 mknod /dev/cvi-base c 10 0
 mknod /dev/cvi-sys c 10 62
 mknod /dev/cvi-dwa c 10 61
 mknod /dev/cvi-ldc c 10 58
 mknod /dev/cvi-stitch c 10 60
 mknod /dev/cvi-vpss c 10 59
 crw-rw---- 1 root root 10, 0 Jan 1 00:08 /dev/cvi-base
 crw-rw---- 1 root root 10, 61 Jan 1 00:08 /dev/cvi-dwa
 crw-rw---- 1 root root 10, 59 Jan 1 00:07 /dev/cvi-ldc
 crw-rw---- 1 root root 10, 60 Jan 1 00:07 /dev/cvi-stitch
 crw-rw---- 1 root root 10, 62 Jan 1 00:08 /dev/cvi-sys
 
 mknod /dev/cvi-base c 10 0
 mknod /dev/cvi-sys c 10 62
 mknod /dev/cvi-dwa c 10 61
 mknod /dev/cvi-ldc c 10 59
 mknod /dev/cvi-stitch c 10 60
 
 | 
4.3.2 自动创建设备节点
4.3.2.1 mdev机制
udev是一个用户程序,在 Linux下通过 udev来实现设备文件的创建与删除, udev可以检测系统中硬件设备状态,可以根据系统中硬件设备状态来创建或者删除设备文件。比如使用modprobe命令成功加载驱动模块以后就自动在 /dev目录下创建对应的设备节点文件 ,使用rmmod命令卸载驱动模块以后就 删除掉 /dev目录下的设备节点文件。 使用 busybox构建根文件系统的时候, busybox会创建一个 udev的简化版本 mdev,所以在嵌入式 Linux中我们使用mdev来实现设备节点文件的自动创建与删除, Linux系统中的热插拔事件也由 mdev管理:
| 1
 | echo /sbin/mdev > /proc/sys/kernel/hotplug
 | 
4.4 设置文件私有数据
一般open函数里面设置好私有数据以后,在 write、 read、 close等函数中直接读取 private_data即可得到设备结构体。

4.5 设备号
include\linux\kdev_t.h

| 12
 3
 4
 5
 
 | MINORBITS 表示次设备号位数,一共是 20 位;MINORMASK 表示次设备号掩码;
 MAJOR 用于从 dev_t 中获取主设备号,将 dev_t 右移 20 位即可
 MINOR 用于从 dev_t 中获取次设备号,取 dev_t 的低 20 位的值即可
 MKDEV 用于将给定的主设备号和次设备号的值组合成 dev_t 类型的设备号
 
 | 

定义了major主设备就用静态注册,否则动态分配设备号注册字符设备。
4.5.1 静态分配和释放一个设备号
| 12
 3
 
 | #include <linux/fs.h>register_chrdev_region()
 unregister_chrdev_region()
 
 | 
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 
 | #include <linux/module.h> #include <linux/cdev.h>
 #include <linux/fs.h>
 
 #define MY_MAJOR_NUM 202
 static const struct file_operations my_dev_fops = {
 .owner = THIS_MODULE,
 .open = my_dev_open,
 .release = my_dev_close,
 .unlocked_ioctl = my_dev_ioctl,
 };
 static int __init hello_init(void){
 int ret;
 dev_t dev = MKDEV(MY_MAJOR_NUM, 0);
 
 
 ret = register_chrdev_region(dev, 1, "my_char_device");
 if (ret < 0){
 pr_info("Unable to allocate mayor number %d\n", MY_MAJOR_NUM);
 return ret;
 }
 
 cdev_init(&my_dev, &my_dev_fops);
 ret= cdev_add(&my_dev, dev, 1);
 if (ret < 0){
 unregister_chrdev_region(dev, 1);
 pr_info("Unable to add cdev\n");
 return ret;
 }
 return 0;
 }
 static void __exit hello_exit(void) {
 cdev_del(&my_dev);
 unregister_chrdev_region(MKDEV(MY_MAJOR_NUM, 0), 1);
 }
 
 | 
4.5.2 动态分配和释放一个设备号
| 12
 3
 
 | #include <linux/fs.h>alloc_chrdev_region()
 unregister_chrdev_region()
 
 | 
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 
 | static struct class*  helloClass;static struct cdev my_dev;
 dev_t dev;
 static int __init hello_init(void) {
 int ret;
 dev_t dev_no;
 int Major;
 struct device* helloDevice;
 ret = alloc_chrdev_region(&dev_no, 0, 1, DEVICE_NAME);
 if (ret < 0){
 pr_info("Unable to allocate Mayor number \n");
 return ret;
 }
 Major = MAJOR(dev_no);
 dev = MKDEV(Major,0);
 cdev_init(&my_dev, &my_dev_fops);
 ret = cdev_add(&my_dev, dev, 1);
 if (ret < 0){
 unregister_chrdev_region(dev, 1);
 pr_info("Unable to add cdev\n");
 return ret;
 }
 helloClass = class_create(THIS_MODULE, CLASS_NAME);
 if (IS_ERR(helloClass)){
 unregister_chrdev_region(dev, 1);
 cdev_del(&my_dev);
 pr_info("Failed to register device class\n");
 return PTR_ERR(helloClass);
 }
 helloDevice = device_create(helloClass, NULL, dev, NULL, DEVICE_NAME);
 if (IS_ERR(helloDevice)){
 class_destroy(helloClass);
 cdev_del(&my_dev);
 unregister_chrdev_region(dev, 1);
 pr_info("Failed to create the device\n");
 return PTR_ERR(helloDevice);
 }
 return 0;
 }
 static void __exit hello_exit(void) {
 device_destroy(helloClass, dev);
 class_destroy(helloClass);
 cdev_del(&my_dev);
 unregister_chrdev_region(dev, 1);
 }
 
 | 
4.6 添加设备和类
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 
 | struct class *class; /* 类 */ struct device *device; /* 设备 */
 dev_t devid; /* 设备号 */
 static int __init led_init(void) {
 class = class_create(THIS_MODULE, "xxx");
 device = device_create(class, NULL, devid, NULL, "xxx");
 return 0;
 }
 static void __exit led_exit(void) {
 device_destroy(newchrled.class, newchrled.devid);
 class_destroy(newchrled.class);
 }
 module_init(led_init);
 module_exit(led_exit);
 
 | 
5 内核源码树添加一个字符设备驱动
5.1 准备驱动源码
这里以misc device为例, 进入drivers/misc目录,新建目录hello_drv。放入驱动源码和Makefile和Kconfig。
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 
 | #include <linux/module.h>#include <linux/fs.h>
 #include <linux/errno.h>
 #include <linux/miscdevice.h>
 #include <linux/kernel.h>
 #include <linux/major.h>
 #include <linux/mutex.h>
 #include <linux/proc_fs.h>
 #include <linux/seq_file.h>
 #include <linux/stat.h>
 #include <linux/init.h>
 #include <linux/device.h>
 #include <linux/tty.h>
 #include <linux/kmod.h>
 #include <linux/gfp.h>
 
 static int major = 0;
 static struct cdev hello_cdev;
 static char kernel_buf[1024];
 static struct class *hello_class;
 
 static ssize_t hello_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset){
 int err;
 err = copy_to_user(buf, kernel_buf, min(1024, size));
 return min(1024, size);
 }
 static ssize_t hello_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset){
 int err;
 err = copy_from_user(kernel_buf, buf, min(1024, size));
 return min(1024, size);
 }
 static int hello_drv_open (struct inode *node, struct file *file){
 return 0;
 }
 static int hello_drv_close (struct inode *node, struct file *file){
 return 0;
 }
 static struct file_operations hello_drv = {
 .owner     = THIS_MODULE,
 .open    = hello_drv_open,
 .read    = hello_drv_read,
 .write   = hello_drv_write,
 .release = hello_drv_close,
 };
 
 static int __init hello_init(void){
 int err;
 int rc;
 dev_t devid;
 #if 0
 
 #else
 rc = alloc_chrdev_region(&devid, 0, 1, "hello");
 major = MAJOR(devid);
 cdev_init(&hello_cdev, &hello_drv);
 cdev_add(&hello_cdev, devid, 1);
 #endif
 hello_class = class_create(THIS_MODULE, "hello_class");
 err = PTR_ERR(hello_class);
 if (IS_ERR(hello_class)) {
 printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
 unregister_chrdev(major, "hello");
 return -1;
 }
 device_create(hello_class, NULL, MKDEV(major, 0), NULL, "hello");
 return 0;
 }
 
 static void __exit hello_exit(void){
 device_destroy(hello_class, MKDEV(major, 0));
 class_destroy(hello_class);
 #if 0
 
 #else
 cdev_del(&hello_cdev);
 unregister_chrdev_region(MKDEV(major,0), 1);
 #endif
 }
 
 module_init(hello_init);
 module_exit(hello_exit);
 MODULE_LICENSE("GPL");
 
 | 
5.2 MakeFile

| 12
 
 | userprogs-always-y += hello_testuserccflags += -I usr/include
 
 | 
这里表示用userspace方式去编译应用程序,hello_test就是用户程序。
假如我们多个文件hello1.c hello2.c, 如何得到hello.o和hello.ko呢?如下参考:

5.3 Kconfig

5.4 修改上一级Makefile和Kconfig


让hello_drv目录中的Kconfig也能被内核识别,输入make menuconfig,即可选择将其编译成内核模块还是直接编译进内核镜像,默认default n,也就是CONFIG_HELLO等于n, hello_drv目录是obj-n, 不编译;选择y则表示编译进内核镜像,选择m表示编译成内核模块。
 编译成内核模块,则会在.config中产生CONFIG_HELLO=m的一项配置,编译产生hello.ko

编译成内核镜像,则会在.config中产生CONFIG_HELLO=y的一项配置,编译产生built-in.a,最终该 built-in.a会合入vmlinux。